Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells

نویسندگان

  • Daniel C. Tu
  • Dongyang Zhang
  • Jay Demas
  • Elon B. Slutsky
  • Ignacio Provencio
  • Timothy E. Holy
  • Russell N. Van Gelder
چکیده

Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate numerous nonvisual phenomena, including entrainment of the circadian clock to light-dark cycles, pupillary light responsiveness, and light-regulated hormone release. We have applied multielectrode array recording to characterize murine ipRGCs. We find that all ipRGC photosensitivity is melanopsin dependent. At least three populations of ipRGCs are present in the postnatal day 8 (P8) murine retina: slow onset, sensitive, fast off (type I); slow onset, insensitive, slow off (type II); and rapid onset, sensitive, very slow off (type III). Recordings from adult rd/rd retinas reveal cells comparable to postnatal types II and III. Recordings from early postnatal retinas demonstrate intrinsic light responses from P0. Early light responses are transient and insensitive but by P6 show increased photosensitivity and persistence. These results demonstrate that ipRGCs are the first light-sensitive cells in the retina and suggest previously unappreciated diversity in this cell population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The importance of intrinsically photosensitive retinal ganglion cells and implications for lighting design

We reviewed the role of melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) in light-dependent functions, including circadian rhythm that is important for health and visual perception. We then discussed the implications for lighting design.

متن کامل

Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits.

Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of "recovered" waves through a disti...

متن کامل

Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions.

For decades, rods and cones were thought to be the only photoreceptors in the mammalian retina. However, a population of atypical photoreceptive retinal ganglion cells (RGCs) expresses the photopigment melanopsin and is intrinsically photosensitive (ipRGCs). These ipRGCs are crucial for relaying light information from the retina to the brain to control circadian photoentrainment, pupillary ligh...

متن کامل

The Injury Resistant Ability of Melanopsin-expressing Intrinsically Photosensitive Retinal Ganglion Cells

Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies h...

متن کامل

Retinal Development: Second Sight Comes First

Mammals are functionally blind at birth because responses to rod and cone photoreceptor activation are immature. Recent studies show that the newborn retina is nevertheless sensitive to light. Indeed, intrinsically photosensitive retinal ganglion cells are present from birth and already make functional connections with the suprachiasmatic nucleus, the site of the central circadian clock.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2005